
Visual V2.00
SmartHome App for iPhone & iPad

Page of 1 37

Privacy Policy	
4
Data collected	
4
Analytics (V1.6)	
4
Personal data	
4
Contact Person	
4

Basic Principles	
5
Overview	
5
The Dashboard	
6

Visual - Step by Step	
9
Create Endpoints	
9
Configure Endpoints	
11
Add Widgets	
11
Affect widget order within a category	
14
Widget Management	
14
Configure Widget	
14
Port Connections	
16
Individuelle Widget Parameter	
16
Organize Dashboard	
18

Endpoints (Simple)	
19
Homekit	
19
Homematic	
19
Philips Hue	
20
URL	
20
Time	
20
OpenWeatherMap	
20
HTML Widget	
20
PVOutput.org	
21

Endpoints (Experts)	
22
MQTT Client	
22
HTTP Client	
25
UDP Client	
29

Lambda Functions (Advanced Features)	
30
Lambda Configuration	
31

Global Settings	
34
iCloud Sync	
35

Page of 2 37

Appendix A: Simplified JSON Path Syntax	
36
Appendix B: Data Format For Diagramms	
37
Contact	 37

Page of 3 37

Privacy Policy
Data collected

The following data can be configured by the user in Visual to enable the function
of the app:
• Configuration data for the external devices and web services (e.g., connection

data, user names, passwords)
This data is only stored on the iOS device or synchronized via the user's iCloud
account between iOS devices. The data will not be passed on to the developer or
third parties. There is also no server-side data processing.

Analytics (V1.6)

Visual collects since version 1.6 anonymously app usage data only after the user
consented:

• Used endpoint types
• Used widget types

No personal data is collected and the user consent can be rejected (or given) at any
time in the app settings.

Personal data

Personal data (eg name, e-mail address, telephone number) will only be collected,
stored and processed if you provide the developer with this data through an
explicit e-mail request. The developer uses this data solely for the fulfillment and
processing of your request or for the transmission of directly related information.
Personal data will never be disclosed to third parties.

Contact Person

Please direct questions to the developer of the app: me@andreas-binner.de

Page of 4 37

Basic Principles
Overview

Visuals manages a so-called "Dashboard" which
you can also see directly after the start of the app.
The Dashboard is a scrolling list of widgets . A
widget can be a pure display or an operating
element such as a switch.

The counterpart to the widgets are the
"endpoints". An endpoint represents an external
data source such as a smart home device or web
service. All endpoints have the commonality of
being accessible through the network.

Widgets have "ports" and endpoints have
"datapoints". One port represents a dedicated data
channel. Datapoints have one direction ("read
only" or "read / write") and one type (boolean,
integer, float, percent, data series, color, ...). For
example, a weather sensor may have one
datapoint each for temperature and humidity
("read only" and "float" type).

A widget on the other side can also have exactly one port (eg. a simple gauge
display) or multiple ports for multiple data sources (eg a line chart). Also, controls
can have multiple ports ("read / write") to output a value in different
representations (eg, the color picker for RGB and HSV color space) or simply to
send a value to multiple endpoints. During configuration widget ports are
connected to datapoint of endpoints.

Page of 5 37

Smart
Home

Device

Display/
Control

Endpoint

D
atapoints

Widget

Po
rt

s

The Dashboard

The dashboard is the central view in Visual. From here you can also reach all
important other views via the toolbar at the bottom:

• Enter edit mode
• Main menu

Page of 6 37

Widgets

Edit Mode

Main Menu

Main Menu

Via the main menu you can access all important administration and settings
menus as well as the user manual (this text). All settings are explained in detail
below.

Grid

Page of 7 37

Global Settings

Visual User Manual

Endpoint Management

Widget Management

Lambda Management

Categorie Management

The dashboard displays the configured widgets in a fixed grid. Widgets can be up
to 3 units wide and 2 units tall. The following 6 sizes are available (depending on
the widget type):

Alignment

The dashboard automatically adapts to the screen size and orientation.
Here, the Apple-defined "size class" is crucial. All iOS devices in portrait format
have the size class "Compact". Landscape devices are either "Compact" (iPhones) or
"Normal" (iPad, iPhone Max).

In the class "Compact" the dashboard has by default a width of 3 units. In the class
"Normal" the number doubles to 6 units. But this can be configured in the
Dashboard edit mode.

Page of 8 37

Visual - Step by Step
Create Endpoints

To create a new endpoint, select "Endpoints" in the main menu

To do this, first open the endpoint manager in the dashboard. Add an endpoint by
simply tapping on the "+" button and then selecting the appropriate entry in the
list. The selection dialog can also be closed without adding, by tapping outside the
dialog.

Page of 9 37

Close Add Endpoint

Endpoint

status

Configure
endpoint

Show
Datapoints

Currently, Visual supports the following endpoints:

A detailed description of the individual types can be found in the chapter
"Endpoints".

Homekit Access to Homekit devices and services

Homematic Access to devices via Homematic CCU

Philips Hue Access to Philips Hue controlled devices

URL Static URL (in combination with HTML Widget)

Time Provides current time of day

OpenWeatherMap Access to OpenWeatherMap data

HTML Widget Provides HTML Widget

MQTT Client Generic access to MQTT Broker (JSON Payload)

HTTP Client Generic access to HTTP Server (JSON Payload)

UDP Client Generic UDP client sending datagrams (Binary, JSON)

Page of 10 37

Configure Endpoints

To configure an endpoint, simply tap on the corresponding entry.

Depending on the endpoint type, there are different configuration parameters (see
chapter "Endpoints"). All endpoints have the parameter "Name" to give the list
entry a unique name.
Important: For all endpoints communicating with an external device or service, it is
at least necessary to provide a URL or IP address.

After an endpoint connects, you can see the endpoint's
datapoints. Simply tap on the blue button showing the
number of datapoints endpoint name:

You can directly add a default widget for some datapoint types. To do so tap on the
"Widget Plus" button.

Add Widgets

First enter the "Edit Mode" by tapping on the Dashboard icon. All widgets will
show a moving dashed border and two button at the bottom".

Page of 11 37

Add default
widget

Mode:

Read

Read/Write

Datapoint
Type

Now tap on the "Add widget" icon in the title bar. In the appearing dialog, tap on
the corresponding entry in the list. If your are in the single column dashboard,
additional the category where to put the new widget needs to be selected.

In addition the grid width of the dashboard can be changed. Note the grid width
options depend on the so called "size class" (compact e.g. iPhone and normal e.g.
iPad)!

WIDGET TYPES

Gauge Display of a single value gauge style (with unit)

Page of 12 37

Add widget

Delete widget

Move selected
widget down

Move selected
widget up

Change grid
width units

1x Tap to select

Long tap to drag

Level Display of a single value bar style (with unit)

Status
Indicator

Display of a binary value (e.g. 0/1 or on/off) or a color (hue)

Text Display of a single line of text

WebView Display of HTML content (e.g. an HTML widget or an external
website)

Selection Select a single option from a list

Switch Simple on / off switch

Button
Array

Display of (up to 6) stateless buttons

Slider Horizontal slider controller

Color Color picker (or only display a color)

Button Stateless button

Image Shows am image (received as data or loaded from URL)

Line
diagram

Display of (up to 8) data series. Note: Ports 1-4 and the ports
5-8 share a y-axis each! This means two different value
ranges are supported.

Page of 13 37

Affect widget order within a category

Select widget by tapping the title once. Now the position of the selected widget
can be changed with the arrow buttons in the bottom toolbar . Visual always tries
to arrange the widgets within a category as compactly as possible (with few gaps).
Therefore the position can't be chosen freely!
Alternatively a widget can be dragged after a long tap onto another widget which
causes them to switch places.

Widget Management

As an alternative to the dashboard editing mode, you can
also edit the widgets via the widget management. To do this,
tap on "Widgets" in the main menu.

Here you can see all widgets in a simple list. The order of the widgets can be easily
changed by drag & drop - can also be moved between categories. By tapping a list
entry, the setting for the widget opens.

Configure Widget

Page of 14 37

To configure a widget, just tap on the "gears" bottom of the widget in the bottom,
right corner. Now the configuration dialog opens.

The following parameters are available for all widget types:

Name The title of the widget

Size A widget can take one of 6 sizes (not all sizes are allowed on all
widgets!)

Page of 15 37

Exit
configuration

Widget title

Widget

categoriesAdd category

Delete
selected
category

Widget size

Widget

ports

Tap to connect/
disconnect port

Widget
specific

parameter

Port Connections

Tap ⊕ on a port to connect to a datapoints.
Note: Only compatible datapoints are offers for selection!
Tap ⊗ to disconnect the port.

Individuelle Widget Parameter

Each widget type has special parameters with which you can influence the
appearance and behavior.

Categories Widgets can be assigned to one or more categories. Widgets
appear in the Dashboard in all assigned categories.
Attention: If a widget is no longer assigned to a category, the
widget will be deleted!

Ports Here are all ports of the widget listed and it can be linked to an
datapoint (or deleted)

Gauge Ignore delivered min/max
values

On: Default values (derived from
the unit) are used for maximum
and minimum value
Of: The "min" and "max" value of
the connected datapoint is used

Level Display type • Normal: Grey bar
• Green➔Red: Gradient from

green to red
• Red➔Green: Gradient from red

to green
• Peak Red: Above 80% Red

Page of 16 37

Status
Indicator

Off Text Text displayed in the "Off" state**

On Text Text displayed in the "On" state**

On Color Color in the "On" state (ignored if
the "Hue" port is used!)

Text Font size Font size in point

Use monospace font The non-proportional system font
is used

Selection Selection list List of possible values
Note: Depending on the connection
type, a selection index (0...5) or the
converted value is derived from the
label (e.g. 18°C -> 18.0).

Switch Off Text Text displayed in the "off" state**

On Text Text displayed in the "An" state**

Keymatrix Selection list List of possible values
Note: Depending on the connection
type, a selection index (0...5) or the
converted value is derived from the
label (e.g. 18°C -> 18.0).

Slider Delay in ms Minimum time between two sent
new values

Show values Current value is displayed

Number of steps Step width of the controller

Colorpicker Delay in ms Minimum time between two sent
new values

Button Value to send Value sent when the button is
triggered: 0/0.0/0% or 1/1.0/100%
(depending on the connection
type)

Button text Text displayed in the button**

Line Chart Interpolation • Linear: Connection over a
straight line

• Stepped: Connection via steps
• BezierCubic: Connection via

Bezier curves

Page of 17 37

** SF-Symbols are supported. To do this, instead of the text, specify the name of
the SF symbol with a preceded '#'. For example, #power for the display of the
following symbol: 􀆨

Organize Dashboard

There are several ways to influence the appearance of the dashboard:

• Change the configuration of the individual widget

Many widgets have display options found in the widget configuration (see
above).

• Change the order of the categories
To do this, select the "Category" entry from the main menu and change the
order in the dialog by dragging and dropping it in the list. Here the categories
can also be renamed.

Filled Area under the curve is filled

Autoscale y-axis On: Scale derived from minimal
and maximal value of the series
Of: The "min" and "max" value of
the connected datapoint is used

Show points Shows individual values as points

First line color Color of the first series of values

Color distance Define the colors of the following
series

Format X-Axis • None: No X-axis
• Time: Show x-values as time
• Date: Show x-values as date
• Minutes: Show x-values as

minutes

Page of 18 37

Endpoints (Simple)
Visual supports a number of endpoints, which are described below.

Homekit

Provides all Homekit devices and their "Services/Characteristics" in Visual as an
endpoint.

Important: Using this endpoint requires that you give Visual the permission to access
Homekit devices!

Homematic

This endpoint allows access to homematic devices. This requires a CCU or CCU2
gateway with installed XML-API patch. The following parameters have to be
configured:

URL URL of the CCU

Login Login name (if assigned)

Password Password (if given)

Time interval for reloading The data from the CCU is periodically read out in the
specified time interval (in seconds)

Page of 19 37

Change
order on

dashboard
Delete

category

Change
name

Philips Hue

With this endpoint you can access Philips Hue lamps. For this a Philips Hue
gateway must be present. The following parameters have to be configured:

Important: On the first start you will be asked to pair the app with the Hue Gateway.
Please follow the instructions and press the pairing button on the Hue Gateway.

URL

This endpoint provides only one connection. This port provides a configurable
URL. This can be used in conjunction with the WebView widget to display any web
page in the dashboard.

Time

This endpoint provides only one connection. This port provides the current time as
text. Currently, the only meaningful use is currently the connection with the text
widget to display the time in the dashboard.

OpenWeatherMap

The OpenWeatherMap endpoint provides connections for the current
temperature, humidity, wind force and wind direction. In the endpoint
configuration you can specify the location for the current weather data and your
OpenWeatherMap App-Key.
Note: You need to register at OpenWeatherMap first and generate an App-
Key. The registration is free.

HTML Widget

Hide unreadable datapoints Homematic datapoints that are unreadable are
ignored

URL URL of the Hue Gateway

Time interval for reloading The data from the gateway is periodically read out in
the specified time interval (in seconds)

Page of 20 37

In this endpoint you can deposit an HTML widget. HTML widgets are usually
intended for embedding into a web page. They can be found on the Internet eg
many weather sides are offering HTML widgets. The HTML code is simply copied to
the designated field in the endpoint configuration via "Copy / Paste". The port then
provides a local URL that can then be linked to a WebView widget.

PVOutput.org

This endpoint reads data from the photovoltaic web service pvoutput.org

Time interval for reloading The data is requested periodically in the specified time
interval (in seconds)

System-ID System ID (taken from the personal PVOutput.org
profile)

API-ID API-ID (from the personal PVOutput.org profile)

Page of 21 37

http://PVOutput.org
http://PVOutput.org

Endpoints (Experts)

MQTT Client

MQTT CLIENT CONFIGURATION

This endpoint allows to subscribe or publish data to a MQTT broker.
Important: the MQTT topic payloads have to be in JSON format!

Basic Configuration

* Multiple Topics have to be comma separated. Wildcards ("#" oder "+“) are allowed

The menu bar shows if the connection has been successfully established. Only in
this case the Port-Wizard can be used!

Page of 22 37

URL of the
MQTT Broker

Login data

(optional)

Topics to be
subscribed*

Port of the MQTT
Broker

PORT-WIZARD

The wizard tries to fill in the data point
configuration semi-automatically. To do
this, the wizard "listens" to all subscribed

topics and analyzes the payload. Then a list of possible
data points is displayed. Here select the data points to
be generated. Then tap on "Apply".

Important notes for the wizard to work:

•The payload must be in JSON format!
•First enter all topic names in the "Topics" field to which
the wizard should react!
•Data must be received, so make sure that the relevant
topics are published while the wizard is running!

MANUEL PORT CONFIGURATION
 

* always specify both "min" and "max" !

Type Datapoint type

Name Display name

Topic Topic connected to this datapoint. Note: No wildcards
allowed!

Send value If the connection is to be used for publishing, the payload
must be entered here. In this case, the placeholder %v is
replaced by the actual value. Example: {"value":% v}

Receive value Here it is specified where in the payload the connection
value can be found. To do this, specify a JSONPath
expression in angle brackets ("< >") - see examples below

Unit (Input) Unit of the port - Static value or via JSONPath from the topic
payload

Min (Input) Minimal value of the port - Static value or via JSONPath from
the topic payload*

Max (Input) Maximal value of the port - Static value or via JSONPath from
the topic payload*

Page of 23 37

EXTRACTING VALUE FROM RECEIVED DATA

Static values can be entered directly in the fields (mostly for Min, Max and Unit).
In most cases it is necessary to get the value dynamically from the JSON payload of
the broker. This can be accessed with a simplified JSONPath notation on individual
JSON properties (see Appendix A for details on the syntax). The JSON Path has to
be put into "<...>" brackets!

DELETE PORT

Swipe left on the port, then tap the "Delete" button. Note: One connection must
always be configured!

Page of 24 37

Datapoint type

Topic for this
datapoint

Receive Value

Name

Maximum value

Minimum value

Unit

Send value

HTTP Client

In principle, this endpoint type is very similar to the MQTT client. Only HTTP is used
here as the transport protocol instead of MQTT.

DATAPOINT CONFIGURATION

As with the MQTT client, the individual data points can be configured manually:

Name Display name

Type Datapoint type

Path If the option "Individual requests per datapoint" is activated,
this value is appended to the global URL. If the global URL
does not end with a "/", the last path component is removed
before appending. The placeholder "% v" for the value and
"% i" for the unique identification of the datapoint can be
used in this field.

Page of 25 37

Base-URL of
the server

Login data

(optional)

Load interval
(sec)

Authentication

token (optional)

Individual HTTP
request per
datapoint

* always specify both "min" and "max" !

Send value If the connection is to be used for sending, the payload must
be entered here. In this case, the placeholder %v is replaced
by the actual value. Example: {"value":% v}

Receive value Here it is specified where in the response payload the
connection value can be found. To do this, specify a
JSONPath expression in angle brackets ("< >") - see
examples below

Unit (Input) Unit of the port - Static value or via JSONPath from the
response payload

Min (Input) Minimal value of the port - Static value or via JSONPath from
the response payload*

Max (Input) Maximal value of the port - Static value or via JSONPath from
the response payload*

Page of 26 37

Datapoint type

Receive Value

Name

Maximum value

Minimum value

Unit

Send value

SERVER COMMUNICATION

Read data: This endpoint uses the HTTP GET method to read data from the server.
The server response to the request must be in JSON format so that Visual can
evaluate the data!
Write data: The HTTP POST method is used to trigger actions on the server. The
payload of the request can be defined separately for each datapoint. The
placeholder "% v" is replaced by the actual value of the widget port. Alternatively,
it is possible to use HTTP GET. To do so, the "% v" placeholder must be used in the
path field.

Examples:

Globale URL: http://myserver/api/

Read temperature via HTTP GET to "getTemperature"
Server response in JSON: { "temp": 22.0, "unit": "°C" }

➜ GET http://myserver/api/getTemperature	

Read specific temperature via HTTP GET to "getTemperature"
Server response in JSON: { "temp": 22.0, "unit": "°C" }

➜ GET http://myserver/api/getTemperature?ident=Kitchen	

Write temperatur via HTTP GET to "setTemperature"
Widget value is 20.0

Path getTemperature

Send value <temp>

Unit <unit>

Ident Kitchen

Path getTemperature&ident=%i

Send value <temp>

Unit <unit>

Page of 27 37

http://myserver/api/

➜ GET http://myserver/api/setTemperature?value=20.0	

Write temperatur via HTTP POST to "setTemperature"
Payload in JSON, Widget value is 20.0

➜ POST http://myserver/api/setTemperature	
Payload:{ "value":20.0 }	

DATAPOINT WIZARD

Alternatively, you can use the wizard. The global URL is used here to retrieve data
from the server via HTTP GET

Path setTemperature?value=%v

Send value

Path setTemperature

Send value { "value": %v }

Page of 28 37

UDP Client

This generic endpoint allows to send UDP datagrams. The datagrams can
configured to send text based payloads (e.g. JSON) or binary data playload.

Note: This endpoint does not support receiving data!

DATAPOINT CONFIGURATION

BINARY PAYLOAD

In order to send a binary payload simply use the "0x" prefix in the "Send Value"
configuration. In order to embed the current value of the datapoint, several
placeholders are allowed:

For any value types longer than one byte, the global "Endianess" setting is used to
form the value in the binary buffer!
The following example will insert the current integer datapoint as a 16-bit value
into a binary payload. The payload starts with the byte "0xAA" followed by the 16-
bit value and ends with the byte "0xBB":

Placeholder Type

[b] 1-byte boolean

[u8], [u16], [u32] Unsigned 8, 16 or 32 bit integer

[i8], [i16], [i32] Signed 8, 16 or 32 bit integer

[f], [d] Single or double precision float

[s] UTF8 String

Page of 29 37

Destination
IP Address

Port

Endianess

Lambda Functions (Advanced Features)
Lambdas are small functions written in Javascript that process data from endpoints
and make the results available to the rest of the system.
Important: This is an expert function because it requires programming
knowledge in JavaScript!

From the dashboard, the Lambda icon can be used to access the Lambda
administration mode:

Page of 30 37

Any
endpoint

Lambda

Function

Lambda

Result

Endpoint
Widget

Add

Lambda

Lambda Status
Lambda activate /

deactivate

By swiping from right to left, the "Delete" button appears.
Tapping the table row takes you to the lambda configuration.

Lambda Configuration
A lambda consists of exactly one Javascript function called "handler". This function
receives a Javascript object as a transfer argument.

Data Input

A lambda function can have any number of input connections. To do this, simply
add new connections with the "" icon and connect to any endpoints (currently
only the types "Integer", "Float", "Bool", "Index" and "Percent" are supported!)

All connection values are packed in a transfer object:

{
 name: value,
 name: value,
 allValues: [wert, wert, ...]
 ...

Page of 31 37

Lambda Name

Lambda

Inputs

Add input

Delete inputTap to change
name

Javascript Code

}

In addition to the individual values are all values also passed into a single array
named "allValues" (Attention: The values in the array are sorted by their property
names!). In our example it could look like this

{
 h: 78.3,
 t: 18.7,
 allValues: [78.3, 18.7]
}

The property names in the object correspond to the selected connection
names!

The lambda function is always called when one of the input values has changed. If
there are several input values, their last known value is transferred, therefore each
input value must have been received at least once at the first start before the
lambda function is called for the first time!

Data Output

The lambda function can have several return values. This is also packaged in a
Javascript object with the following scheme:

{
 name: { value: wert, unit: unit, min: min, max: max },
 name: { value: wert, unit: unit, min: min, max: max },
 ...
}

where "unit", "min" und "max" are optional. In this example

{
 dewpoint: { value: 13.4, unit: "°C", min: 0.0, max: 40.0 }
}

Note: Since JavaScript does not have an integer type, you can force it with "forceInt:
true", e.g.

{
 intvalue: { value: 42, forceInt: true }
}

Each value returned by the function is published via the special endpoint "Lambda
Results" and can now be connected to a widget for display.

Page of 32 37

The return value "null" is accordingly ignored and no value is published.
Note: The result of a lambda function can again be the input of another
function (but not itself)!

The lambda used here as an example calculates the dew point from temperature
and humidity using the Magnus formula:

function handler(input) {
 if (input.h == 0.0) {
 return null
 }
 lh = Math.log(input.h / 100.0)
 A = 4222.03716
 B = 241.2
 C = 17.5043
 z = B * lh + ((A * input.t) / (B + input.t))
 n = C - lh - ((C * input.t) / (B + input.t))
 if (n != 0.0) {
 return { dewpoint: { value: z/n, unit: "°C" } }
 }
 return null
}

Page of 33 37

Global Settings

The global attitude currently includes

• Multi-Column Dashboard (In-App Feature)

A separate column is displayed in the dashboard for each category
• Widget Animation

Animates value changes for the Gauge and Level widgets
• Show Frame

Draw frame around widgets
• Analytics

When you start the app for the first time, this setting is queried separately and
can be changed here at any time. If the option is activated, the following
information is anonymously shared with the app author:

• Type and number of widgets used
• Type and number of endpoints used

Page of 34 37

• Appearance
System: Appearance follows the system setting (Light/Dark)
Light: Always light appearance (white background)
Dark: Always dark appearance (black background)

• Storage
Select to store configuration in iCloud and can thus be kept in sync across
multiple devices.

• In-app purchases
• In addition a monthly subscription for € 1.49 can be purchased to unlock

advanced features. Previous buyers of the Ad-Free subscriptions automatically
get these features unlocked, too!
The features mainly target users with Large SmartHome setups:

- Homescreen Widget (V1.7)
- Javascript Lambda Functions (V1.8)
- Multi column dashboard
- Search and filter datapoints
- Import scenes (from selected endpoints)
- Debug-Logging for all endpoints helps solving issues

Please support Visual with this in-app purchase for the cost of less than a
cappuccino per month! Only then can Visual be further developed (new
features) and maintained (new iOS versions). Thank you!

Note: The subscription can be ended at any time in the iCloud subscription settings!

iCloud Sync

The entire Visual configuration is stored locally in the app's sandbox and
automatically synced to the user's iCloud account. That means any change in Visual
will automatically be visible on all other iOS devices in Visual - as long as you're
signed into the same iCloud account!

If you make changes on multiple devices at the same time, you get a conflict
warning and you have to manually decide on a version.

Page of 35 37

Appendix A: Simplified JSON Path Syntax

JSON Path syntax can be used in the data point definitions of the HTTPClient and
MQTTClient endpoints. The JSONPath expression must be entered in angle
bracket (<...>).

Examples:

{
 "Name": "Mustermann",
 "Vorname": "Max"
}

{
 "color": { "red": 1.0, "green": 0.2, "blue": 0.5 }
}

{
 "Fahrzeuge": [
 {"Typ": "PKW", "Räder": 4},
 {"Typ": "Fahrrad", "Räder": 2}
]
}

In addition mathematical expressions can be used. To do so the field value has to
start with "="e.g.

{
 "color": { "red": 1.0, "green": 0.2, "blue": 0.5 }
}

<Name> Mustermann

<Vorname> Max

<color.red> 1.0

<color.blue> 0.5
<color.@keys> red, green, blue

<Fahrzeuge.[0].Räder> 4

<Fahrzeuge.[1].Typ> Fahrrad
<Fahrzeuge.*.Typ> PKW, Fahrrad

<Fahrzeuge.@count> 2

Page of 36 37

Appendix B: Data Format For Diagramms

The "x" values can be a simple index or a data/time value in the Unixtime
format (seconds since 01.01.1970)

 The "x" values are automatically created (0...n)

Contact

me@andreas-binner.de

 =<color.blue>*100 50.0

 =<color.blue>*<color.green>*100 10.0

Type JSON Format JSON Path

[
 {"x": x0, "y": y0},
 {"x": x1, "y": y1},
 …
]

<[*]>

{ "data":
 [
 {"x": x0, "y": y0},
 {"x": x1, "y": y1},
 …
]
}

<data.[*]>

[
 y0, y1, …
]

<[*]>

{ "data":
 [
 y0, y1, …
]
}

<data.[*]>

Page of 37 37

mailto:me@andreas-binner.de

	Privacy Policy
	Data collected
	Analytics (V1.6)
	Personal data
	Contact Person
	Basic Principles
	Overview
	The Dashboard
	Main Menu
	Grid
	Alignment
	Visual - Step by Step
	Create Endpoints
	Configure Endpoints
	Add Widgets
	Affect widget order within a category
	Widget Management
	Configure Widget
	Port Connections
	Individuelle Widget Parameter
	Organize Dashboard
	Endpoints (Simple)
	Homekit
	Homematic
	Philips Hue
	URL
	Time
	OpenWeatherMap
	HTML Widget
	PVOutput.org
	Endpoints (Experts)
	MQTT Client
	HTTP Client
	UDP Client
	Lambda Functions (Advanced Features)
	Lambda Configuration
	Data Input
	Data Output
	Global Settings
	iCloud Sync
	Appendix A: Simplified JSON Path Syntax
	Appendix B: Data Format For Diagramms
	Contact

