
Visual V1.22
SmartHome App for iPhone & iPad

Page of 1 35

Privacy Policy	
3
Data collected	
3
Analytics (V1.6)	
3
Personal data	
3
Advertising (only V1.0 to V1.2)	
3
Contact Person	
4

Basic Principles	
4
Overview	
4
The Dashboard	
5

Visual - Step by Step	
8
Create Endpoints	
8
Configure Endpoints	
10
Add Widgets	
10
Affect widget order within a category	
12
Widget Management	
12
Configure Widget	
13
Individuelle Widget Parameter	
13
Organize Dashboard	
16

Endpoints (Simple)	
17
Homekit	
17
EZControl XS1	
17
Philips Hue	
18
URL	
18
Uhrzeit	
18
OpenWeatherMap	
19
HTML Widget	
19
PVOutput.org	
19

Endpoints (Experts)	
19
MQTT Client	
19
HTTP Client	
25

Lambda Functions (Advanced Features)	
29
Lambda Configuration	
30

Global Settings	
33
iCloud Sync	
34
Contact	 35

Page of 2 35

Privacy Policy

Data collected

The following data can be configured by the user in Visual to enable the function
of the app:
• Configuration data for the external devices and web services (e.g., connection

data, user names, passwords)
This data is only stored on the iOS device or synchronized via the user's iCloud
account between iOS devices. The data will not be passed on to the developer or
third parties. There is also no server-side data processing.

Analytics (V1.6)

Visual collects since version 1.6 anonymously app usage data only after the user
consented:

• Used endpoint types
• Used widget types

No personal data is collected and the user consent can be rejected (or given) at any
time in the app settings.

Personal data

Personal data (eg name, e-mail address, telephone number) will only be collected,
stored and processed if you provide the developer with this data through an
explicit e-mail request. The developer uses this data solely for the fulfillment and
processing of your request or for the transmission of directly related information.
Personal data will never be disclosed to third parties.

Advertising (only V1.0 to V1.2)

Visual provides advertising through the Google Mobile Ads Network (AdMob).
Depending on the user's iOS settings, the Ad-ID of the iOS device can be used to
display personalized ads. Google's privacy policy applies (see here). The developer
has no access at any time to the collected personal data.

Page of 3 35

Contact Person

Please direct questions to the developer of the app: me@andreas-binner.de

Basic Principles

Overview

Visuals manages a so-called "Dashboard" which
you can also see directly after the start of the app.
The Dashboard is a scrolling list of widgets . A
widget can be a pure display or an operating
element such as a switch.

The counterpart to the widgets are the
"endpoints". An endpoint represents an external
data source such as a smart home device or web
service. All endpoints have the commonality of
being accessible through the network.

Widgets have "ports" and endpoints have
"datapoints". One port represents a dedicated data
channel. Datapoints have one direction ("read
only" or "read / write") and one type (boolean,
integer, float, percent, data series, color, ...). For
example, a weather sensor may have one
datapoint each for temperature and humidity
("read only" and "float" type).

A widget on the other side can also have exactly one port (eg. a simple pointer
display) or multiple ports for multiple data sources (eg a line chart). Also, controls

Page of 4 35

Smart
Home

Device

Display/
Control

Endpoint

D
atapoints

Widget

Po
rt

s

can have multiple ports ("read / write") to output a value in different
representations (eg, the color picker for RGB and HSV color space) or simply to
send a value to multiple endpoints. During configuration widget ports are
connected to datapoint of endpoints.

The Dashboard

The dashboard is the central view in Visual. From here you can also reach all
important other views via the toolbar at the bottom:

• Enter edit mode
• Main menu

Page of 5 35

Widgets

Edit Mode

Main Menu

Main Menu

Via the main menu you can access all important administration and settings
menus as well as the user manual (this text). All settings are explained in detail
below.

Page of 6 35

Global Settings

Visual User Manual

Endpoint Management

Widget Management

Lambda Management

Categorie Management

Grid

The dashboard displays the configured widgets in a fixed grid. Widgets can be up
to 3 units wide and 2 units tall. The following 6 sizes are available (depending on
the widget type):

Alignment

The dashboard automatically adapts to the screen size and orientation.
Here, the Apple-defined "size class" is crucial. So all iOS devices in portrait format
have the size class "Normal". Landscape devices are either "Compact" (iPhones) or
"Normal" (iPad, iPhone Plus).

In the class "Compact" the dashboard has a width of 3 units. In the class "Normal"
the number doubles to 6 units.

Page of 7 35

Visual - Step by Step

Create Endpoints

To create a new endpoint, select "Endpoints" in the main menu

To do this, first open the endpoint manager in the dashboard. Add an endpoint by
simply tapping on the "+" button and then selecting the appropriate entry in the
list. The selection dialog can also be closed without adding, by tapping outside the
dialog.

Page of 8 35

Add endpoint Back to
Dashboard

Endpoint

status

Configure
endpoint

Delete
endpoint

Add widgets for
all data points

Currently, Visual supports the following endpoints:

Homekit Access to Homekit devices and services

EZControl XS1 Access to devices via EZControl XS1

Homematic Access to devices via Homematic CCU

Philips Hue Access to Philips Hue controlled devices

URL Static URL (in combination with HTML Widget)

Time Provides current time of day

OpenWeatherMap Access to OpenWeatherMap data

HTML Widget Provides HTML Widget

MQTT Client Generic access to MQTT Broker (JSON Payload)

Page of 9 35

A detailed description of the individual types can be found in the chapter
"Endpoints".

Configure Endpoints

To configure an endpoint, simply tap the slider icon of the corresponding entry.

Depending on the endpoint type, there are different configuration parameters (see
chapter "Endpoints"). All endpoints have the parameter "Name" to give the list
entry a unique name.
 Important: For all endpoints communicating with an external device or service, it
is at least necessary to provide a URL or IP address.

After an endpoint connects, you can see the endpoint's datapoints. Simply tap on
the endpoint name.

Add Widgets

First enter the "Edit Mode" by tapping on the Dashboard icon. All widgets
start to "wiggle".

HTTP Client Generic access to HTTP Server (JSON Payload)

Page of 10 35

Datapoints

Mode:

Read

Read/Write

Tap to show/hide datapoint

Datapoint
Type

Now tap on the "Add widget" icon next to the category title. In the
appearing dialog, tap on the corresponding entry in the list. The dialogue

can also be closed without adding, by tapping outside the dialogue.

Note: If the dashboard is empty, the "Add widget" icon appears in the bottom
toolbar!

The following widget types are available:

Gauge display Display of a single value gauge style (with unit)

Level display Display of a single value bar style

Status Indicator Display of a binary value (e.g. 0/1 or on/off) or a color (hue)

Text Display of a single line of text

Page of 11 35

Add widget
to category

Open menu

• Edit Settings

• Delete

Position
selected
widget

Exit edit
mode

Category

• 1x Tap to
select

• Long tap to
position

Affect widget order within a category

Select widget by tapping the title once. Now the position of the selected widget
can be changed with the arrow buttons in the toolbar . Visual always tries to
arrange the widgets within a category as compactly as possible (with few gaps).
Therefore the position can't be chosen freely!

Widget Management

As an alternative to the dashboard editing mode, you can
also edit the widgets via the widget management. To do this,
tap on "Widgets" in the main menu.

WebView Display of HTML content (eg an HTML widget or an external
website)

Selection Select a single option from a list

Switch Simple on / off switch

Keymatrix Display of (up to 6) stateless buttons

Slider Discrete slider controller

Color control Color display and selector

Button Stateless button

Line diagram Display of (up to 8) date series. Note: Ports 1-4 and the ports
5-8 share a y-axis each! This means two different value ranges
are supported.

Page of 12 35

Here you can see all widgets in a simple list. The order of the widgets can be easily
changed by drag & drop - can also be moved between categories. By tapping a list
entry, the setting for the widget opens.

Configure Widget

To configure a widget, just tap on the title of the widget in the Dashboard. Now
the configuration dialog opens.

The following parameters are available for all widget types:

• Name

The title of the widget
• Size

A widget can take one of 6 sizes (not all sizes are allowed on all widgets!)
• Categories

Widgets can be assigned to one or more categories. Widgets appear in the
Dashboard in all assigned categories.
Attention: If a widget is no longer assigned to a category, the widget
will be deleted!

• Connections
Here are all ports of the widget listed and it can be linked to an endpoint (or
deleted)

Note: Only compatible datapoint are offers for selection!

Individuelle Widget Parameter

Page of 13 35

Each widget type has special parameters with which you can influence the
appearance and behavior.

Gauge Ignore delivered min/max
values

On: Default values (derived from
the unit) are used for maximum
and minimum value
Off: The "min" and "max" value of
the connected datapoint is used

Page of 14 35

Exit
configuration

Widget title

Widget

categories

Add category
Delete

selected
category

Widget size

Widget

ports

Tap to connect/
disconnect port

Widget

parameter

Delete
widget from
dashboard

Level Display type • Normal: Grey bar
• Green➔Red: Gradient from

green to red
• Red➔Green: Gradient from red

to green
• Peak Red: Above 80% Red

Status
Indicator

Off Text Text displayed in the "Off" state**

On Text Text displayed in the "On" state**

On Color Color in the "On" state (ignored if
the "Hue" port is used!)

Text Font size Font size in point

Use monospace font The non-proportional system font
is used

Selection Selection list List of possible values
Note: Depending on the connection
type, a selection index (0...5) or the
converted value is derived from the
label (e.g. 18°C -> 18.0).

Switch Off Text Text displayed in the "off" state**

On Text Text displayed in the "An" state**

Keymatrix Selection list List of possible values
Note: Depending on the connection
type, a selection index (0...5) or the
converted value is derived from the
label (e.g. 18°C -> 18.0).

Slider Delay in ms Minimum time between two sent
new values

Show values Current value is displayed

Number of steps Step width of the controller

Colorpicker Delay in ms Minimum time between two sent
new values

Button Value to send Value sent when the button is
triggered: 0/0.0/0% or 1/1.0/100%
(depending on the connection
type)

Page of 15 35

** SF-Symbols are supported. To do this, instead of the text, specify the name of
the SF symbol with a preceded '#'. For example, #power for the display of the
following symbol:

Organize Dashboard

There are several ways to influence the appearance of the dashboard:

• Change the configuration of the individual widget

Some widgets have display options found in the widget configuration (see
above). To do this, tap the widget title as described in „Create Widget“

• Change the order of the categories
To do this, tap the "Category" icon in the lower toolbar and change the order in
the dialog by dragging and dropping it in the list. Here the categories can also
be renamed.

Button text Text displayed in the button**

Line Chart Interpolation • Linear: Connection over a
straight line

• Stepped: Connection via steps
• BezierCubic: Connection via

Bezier curves

Filled Area under the curve is filled

Autoscale y-axis On: Scale derived from minimal
and maximal value of the series
Off: The "min" and "max" value of
the connected datapoint is used

Show points Shows individual values as points

First line color Color of the first series of values

Color distance Define the colors of the following
series

Format X-Axis • None: No X-axis
• Time: Show x-values as time
• Date: Show x-values as date
• Minutes: Show x-values as

minutes

Page of 16 35

Endpoints (Simple)

Visual supports a number of endpoints, which are described below.

Homekit

Provides all Homekit devices and their "Services/Characteristics" in Visual as an
endpoint.

Important: Using this endpoint requires that you give Visual the permission to access
Homekit devices!

EZControl XS1

The EZControl XS1 is a gateway for many wireless SmartHome devices. This
endpoint allows access to all devices managed in the XS1. The following
parameters have to be configured:

IP Adresse IP address of the XS1

Login Login name (if assigned)

Password Password (if given)

Time interval for reloading The data from the XS1 is periodically read out in the
specified time interval (in seconds)

Page of 17 35

Change
order on

dashboard

Delete
category

Change
name

Homematic

This endpoint allows access to homematic devices. This requires a CCU or CCU2
gateway with installed XML-API patch. The following parameters have to be
configured:

Philips Hue

With this endpoint you can access Philips Hue lamps. For this a Philips Hue
gateway must be present. The following parameters have to be configured:

Important: On the first start you will be asked to pair the app with the Hue Gateway.
Please follow the instructions and press the pairing button on the Hue Gateway.

URL

This endpoint provides only one connection. This port provides a configurable
URL. This can be used in conjunction with the WebView widget to display any web
page in the dashboard.

Uhrzeit

This endpoint provides only one connection. This port provides the current time as
text. Currently, the only meaningful use is currently the connection with the text
widget to display the time in the dashboard.

URL URL of the CCU

Login Login name (if assigned)

Password Password (if given)

Time interval for reloading The data from the CCU is periodically read out in the
specified time interval (in seconds)

Hide unreadable datapoints Homematic datapoints that are unreadable are
ignored

URL URL of the Hue Gateway

Time interval for reloading The data from the gateway is periodically read out in
the specified time interval (in seconds)

Page of 18 35

OpenWeatherMap

The OpenWeatherMap endpoint provides connections for the current
temperature, humidity, wind force and wind direction. In the endpoint
configuration you can specify the location for the current weather data and your
OpenWeatherMap App-Key.
Note: You need to register at OpenWeatherMap first and generate an App-
Key. The registration is free.

HTML Widget

In this endpoint you can deposit an HTML widget. HTML widgets are usually
intended for embedding into a web page. They can be found on the Internet eg
many weather sides are offering HTML widgets. The HTML code is simply copied to
the designated field in the endpoint configuration via "Copy / Paste". The port then
provides a local URL that can then be linked to a WebView widget.
PVOutput.org

This endpoint reads data from the photovoltaic web service pvoutput.org

Endpoints (Experts)

MQTT Client

MQTT CLIENT CONFIGURATION

This endpoint allows to subscribe or publish data to a MQTT broker.
Important: the MQTT topic payloads have to be in JSON format!

Basic Configuration
* Multiple Topics have to be comma separated. Wildcards ("#" oder "+“) are allowed

Time interval for reloading The data is requested periodically in the specified time
interval (in seconds)

System-ID System ID (taken from the personal PVOutput.org
profile)

API-ID API-ID (from the personal PVOutput.org profile)

Page of 19 35

http://PVOutput.org
http://PVOutput.org

The menu bar shows if the connection has been successfully established. Only in
this case the Port-Wizard can be used!

PORT-WIZARD

The wizard tries to fill in the data point configuration
semi-automatically. To do this, the wizard "listens" to all
subscribed topics and analyzes the payload. Then a list
of possible data points is displayed. Here select the
data points to be generated. Then tap on "Apply".

Important notes for the wizard to work:

•The payload must be in JSON format!
•First enter all topic names in the "Topics" field to which
the wizard should react!
•Data must be received, so make sure that the relevant
topics are published while the wizard is running!

MANUEL PORT CONFIGURATION

Page of 20 35

URL of the
MQTT Broker

Login data

(optional)

Topics to be
subscribed*

Port of the MQTT
Broker

 

* always specify both "min" and "max" !

DELETE PORT

Swipe left on the port, then tap the "Delete" button. Note: One connection must
always be configured!

Name Display name

Ident Unique identification

Topic Topic connected to this datapoint. Note: No wildcards
allowed!

Value (Output) If the connection is to be used for publishing, the
payload must be entered here. In this case, the
placeholder %v is replaced by the actual value. Example:
{"value":% v}

Value (Input) Here it is specified where in the payload the connection
value can be found. To do this, specify a JSONPath
expression in angle brackets ("< >") - see examples
below

Unit (Input) Unit of the port - Static value or via JSONPath from the
topic payload

Min (Input) Minimal value of the port - Static value or via JSONPath
from the topic*

Max (Input) Maximal value of the port - Static value or via JSONPath
from the topic payload Payload*

Page of 21 35

Start wizard

Unique ID Topic for this
datapoint

Port (read &
write)

Data type

JSONPATH SYNTAX

Static values can be entered directly in the fields. In most cases it is necessary to
get the value dynamically from the JSON payload of the broker. This can be
accessed with a simplified JSONPath notation on individual JSON properties. The
JSONPath expression must be entered in angle bracket (<...>).

Examples:

{
 "Name": "Mustermann",
 "Vorname": "Max"
}

{
 "color": { "red": 1.0, "green": 0.2, "blue": 0.5 }
}

{
 "Fahrzeuge": [
 {"Typ": "PKW", "Räder": 4},
 {"Typ": "Fahrrad", "Räder": 2}
]
}

In addition mathematical expressions can be used. To do so the field value has to
start with "="e.g.

{
 "color": { "red": 1.0, "green": 0.2, "blue": 0.5 }
}

<Name> Mustermann

<Vorname> Max

<color.red> 1.0

<color.blue> 0.5
<color.@keys> red, green, blue

<Fahrzeuge.[0].Räder> 4

<Fahrzeuge.[1].Typ> Fahrrad
<Fahrzeuge.*.Typ> PKW, Fahrrad

<Fahrzeuge.@count> 2

Page of 22 35

	=<color.blue>*100 50.0

	=<color.blue>*<color.green>*100 10.0

Page of 23 35

DATA FORMAT FOR DIAGRAMMS

The "x" values can be a simple index or a data/time value in the Unixtime
format (seconds since 01.01.1970)

 The "x" values are automatically created (0...n)

Type JSON Format JSON Path

[
 {"x": x0, "y": y0},
 {"x": x1, "y": y1},
 …
]

<[*]>

{ "data":
 [
 {"x": x0, "y": y0},
 {"x": x1, "y": y1},
 …
]
}

<data.[*]>

[
 y0, y1, …
]

<[*]>

{ "data":
 [
 y0, y1, …
]
}

<data.[*]>

Page of 24 35

HTTP Client
In principle, this endpoint type is very similar to the MQTT client. Only HTTP is used
here as the transport protocol instead of MQTT.

DATAPOINT CONFIGURATION

As with the MQTT client, the individual data points can be configured manually:

Page of 25 35

Base-URL of
the server

Login data

(optional)

Load interval
(sec)

Athentication

token (optional)Separate HTTP

request per
datapoint

* always specify both "min" and "max" !

SERVER COMMUNICATION

Name Display name

Ident Unique identification

Path If the option "Individual requests per datapoint" is
activated, this value is appended to the global URL. If the
global URL does not end with a "/", the last path
component is removed before appending. The
placeholder "% v" for the value and "% i" for the unique
identification of the datapoint can be used in this field.

Value (Output) If the connection is to be used for sending, the payload
must be entered here. In this case, the placeholder %v is
replaced by the actual value. Example: {"value":% v}

Value (Input) Here it is specified where in the response payload the
connection value can be found. To do this, specify a
JSONPath expression in angle brackets ("< >") - see
examples below

Unit (Input) Unit of the port - Static value or via JSONPath from the
response payload

Min (Input) Minimal value of the port - Static value or via JSONPath
from the response payload*

Max (Input) Maximal value of the port - Static value or via JSONPath
from the response payload*

Page of 26 35

Start wizard

Datapoint name

Unique ID

Datapoint type

Sub-path appended
to global URL

Ports (read &
write)

Read data: This endpoint uses the HTTP GET method to read data from the server.
The server response to the request must be in JSON format so that Visual can
evaluate the data!
Write data: The HTTP POST method is used to trigger actions on the server. The
payload of the request can be defined separately for each datapoint. The
placeholder "% v" is replaced by the actual value of the widget port. Alternatively,
it is possible to use HTTP GET. To do so, the "% v" placeholder must be used in the
path field.

Examples:

Globale URL: http://myserver/api/

Read temperature via HTTP GET to "getTemperature"
Server response in JSON: { "temp": 22.0, "unit": "°C" }

➜	GET	http://myserver/api/getTemperature	

Read specific temperature via HTTP GET to "getTemperature"
Server response in JSON: { "temp": 22.0, "unit": "°C" }

➜	GET	http://myserver/api/getTemperature?ident=Kitchen	

Write temperatur via HTTP GET to "setTemperature"
Widget value is 20.0

Path getTemperature

Value (in) <temp>

Unit <unit>

Ident Kitchen

Path getTemperature&ident=%i

Value (in) <temp>

Unit <unit>

Path setTemperature?value=%v

Page of 27 35

http://myserver/api/

➜	GET	http://myserver/api/setTemperature?value=20.0	

Write temperatur via HTTP POST to "setTemperature"
Payload in JSON, Widget value is 20.0

➜	POST	http://myserver/api/setTemperature	
Payload:{	"value":20.0	}	

DATAPOINT WIZARD

Alternatively, you can use the wizard. The global URL is used here to retrieve data
from the server via HTTP GET

Value (out)

Path setTemperature

Value (out) { "value": %v }

Page of 28 35

Lambda Functions (Advanced Features)

Lambdas are small functions written in Javascript that process data from endpoints
and make the results available to the rest of the system.
Important: This is an expert function because it requires programming
knowledge in JavaScript!

From the dashboard, the Lambda icon can be used to access the Lambda
administration mode:

By swiping from right to left, the "Delete" button appears.
Tapping the table row takes you to the lambda configuration.

Page of 29 35

Any
endpoint

Lambda

Function

Lambda

Result

Endpoint
Widget

Add

Lambda

Lambda Status
Lambda activate /

deactivate

Lambda Error

Lambda Configuration

A lambda consists of exactly one Javascript function called "handler". This function
receives a Javascript object as a transfer argument.

Data Input

A lambda function can have any number of input connections. To do this, simply
add new connections with the "" icon and connect to any endpoints (currently
only the types "Integer", "Float", "Bool", "Index" and "Percent" are supported!)

All connection values are packed in a transfer object:

{
 name: value,
 name: value,
 allValues: [wert, wert, ...]
 ...
}

Page of 30 35

Lambda Name

Lambda

Inputs

Add input

Delete input
Tap to change

name

Javascript Code

In addition to the individual values are all values also passed into a single array
named "allValues" (Attention: The values in the array are sorted by their property
names!). In our example it could look like this

{
 h: 78.3,
 t: 18.7,
 allValues: [78.3, 18.7]
}

The property names in the object correspond to the selected connection
names!

The lambda function is always called when one of the input values has changed. If
there are several input values, their last known value is transferred, therefore each
input value must have been received at least once at the first start before the
lambda function is called for the first time!

Data Output

The lambda function can have several return values. This is also packaged in a
Javascript object with the following scheme:

{
 name: { value: wert, unit: unit, min: min, max: max },
 name: { value: wert, unit: unit, min: min, max: max },
 ...
}

where "unit", "min" und "max" are optional. In this example

{
 dewpoint: { value: 13.4, unit: "°C", min: 0.0, max: 40.0 }
}

Note: Since JavaScript does not have an integer type, you can force it with "forceInt:
true", e.g.

{
 intvalue: { value: 42, forceInt: true }
}

Each value returned by the function is published via the special endpoint "Lambda
Results" and can now be connected to a widget for display.

The return value "null" is accordingly ignored and no value is published.

Page of 31 35

Note: The result of a lambda function can again be the input of another function
(but not itself)!

The lambda used here as an example calculates the dew point from temperature
and humidity using the Magnus formula:

function handler(input) {
 if (input.h == 0.0) {
 return null
 }
 lh = Math.log(input.h / 100.0)
 A = 4222.03716
 B = 241.2
 C = 17.5043
 z = B * lh + ((A * input.t) / (B + input.t))
 n = C - lh - ((C * input.t) / (B + input.t))
 if (n != 0.0) {
 return { dewpoint: { value: z/n, unit: "°C" } }
 }
 return null
}

Page of 32 35

Global Settings

The global attitude currently includes

• About visual

Displays the version number and license notes
• Multi-Column Dashboard (In-App Feature)

A separate column is displayed in the dashboard for each category
• Widget Animation

Animates value changes for the Gauge and Level widgets
• Analytics

When you start the app for the first time, this setting is queried separately and
can be changed here at any time. If the option is activated, the following
information is anonymously shared with the app author:

• Type and number of widgets used
• Type and number of endpoints used

Page of 33 35

• Appearance
Auto: Appearance follows the system setting (Light/Dark)
Light: Always light appearance (white background)
Dark: Always dark appearance (black background)

• Use iCloud configuration
Configuration is saved in iCloud and can thus be kept in sync across multiple
devices.

• In-app purchases
• Visual V1.0 - V1.2: In the standard version, Visual is free and displays ads at the

bottom of the screen. If you want an ad-free dashboard, you can complete a
monthly renewal subscription for € 1.49 here via In-App Purchasing.

• Visual V1.3: This version is ad-free by default. In addition a monthly
subscription for € 1.49 can be purchased to unlock advanced features. Previous
buyers of the Ad-Free subscriptions automatically get these features unlocked,
too!
The features mainly target users with Large SmartHome setups:

- Homescreen Widget (V1.7)
- Javascript Lambda Functions (V1.8)
- Multi column dashboard
- Search and filter datapoints
- Import scenes (from selected endpoints)
- Debug-Logging for all endpoints helps solving issues

Please support Visual with this in-app purchase for the cost of less than a
cappuccino per month! Only then can Visual be further developed (new
features) and maintained (new iOS versions). Thank you!

Note: The subscription can be ended at any time in the personal iTunes settings!

iCloud Sync

The entire Visual configuration is stored locally in the app's sandbox and
automatically synced to the user's iCloud account. That means any change in Visual
will automatically be visible on all other iOS devices in Visual - as long as you're
signed into the same iCloud account!

If you make changes on multiple devices at the same time, you get a conflict
warning and you have to manually decide on a version.

Page of 34 35

Contact

me@andreas-binner.de

Page of 35 35

mailto:me@andreas-binner.de

	Privacy Policy
	Data collected
	Analytics (V1.6)
	Personal data
	Advertising (only V1.0 to V1.2)
	Contact Person
	Basic Principles
	Overview
	The Dashboard
	Main Menu
	Grid
	Alignment
	Visual - Step by Step
	Create Endpoints
	Configure Endpoints
	Add Widgets
	Affect widget order within a category
	Widget Management
	Configure Widget
	Individuelle Widget Parameter
	Organize Dashboard
	Endpoints (Simple)
	Homekit
	EZControl XS1
	Homematic
	Philips Hue
	URL
	Uhrzeit
	OpenWeatherMap
	HTML Widget
	PVOutput.org
	Endpoints (Experts)
	MQTT Client
	HTTP Client
	Lambda Functions (Advanced Features)
	Lambda Configuration
	Data Input
	Data Output
	Global Settings
	iCloud Sync
	Contact

